.x^2+4=(x+2)(x+2)

Simple and best practice solution for .x^2+4=(x+2)(x+2) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for .x^2+4=(x+2)(x+2) equation:



.x^2+4=(x+2)(x+2)
We move all terms to the left:
.x^2+4-((x+2)(x+2))=0
We add all the numbers together, and all the variables
-((x+2)(x+2))+4=0
We multiply parentheses ..
-((+x^2+2x+2x+4))+4=0
We calculate terms in parentheses: -((+x^2+2x+2x+4)), so:
(+x^2+2x+2x+4)
We get rid of parentheses
x^2+2x+2x+4
We add all the numbers together, and all the variables
x^2+4x+4
Back to the equation:
-(x^2+4x+4)
We get rid of parentheses
-x^2-4x-4+4=0
We add all the numbers together, and all the variables
-1x^2-4x=0
a = -1; b = -4; c = 0;
Δ = b2-4ac
Δ = -42-4·(-1)·0
Δ = 16
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{16}=4$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-4)-4}{2*-1}=\frac{0}{-2} =0 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-4)+4}{2*-1}=\frac{8}{-2} =-4 $

See similar equations:

| 1-x=3(3x) | | 9x+11=-x+8+x | | -3(4y-1)+7y=3(y+3) | | 441=-7(1-8x | | 2(2x+3)+6=6x | | -0.64x+0.44x=44x=44 | | 4.1x+24.27=108.28 | | 4(2x-1)=3x+4 | | -15/(x-1)=-12/x | | 2^1/7/(1.5a)=5/14/0.8 | | 7(x-4)=3x+4 | | -15x=-12x(x-1) | | -3/8x+9+x=19 | | 64^-x+52=128^x | | 18.3x=121 | | z/5.7=8.5 | | (4x+1)/3=x+2 | | x²-23x+132=0 | | 2.50n+3=13 | | 6(2x+4)=6x+30 | | 26-9x=13+14x | | 5x+3.50=3x+2.75 | | (7e+6)=90 | | 3.2g+4=1.2g+12 | | (2x+12)=4x-2 | | 3(-7x-6)=-2(x-6) | | 8(-4x+2)=-56x+40 | | -6(-2x+2)=-35x+7 | | −6(−2x+2)=-35x+7 | | 3=–2k+–7 | | 51-5x=17+17x | | 5–3x=-20 |

Equations solver categories